Photogrammetric Measurement of gravitational deformations of a VGOS antenna using UAV

Cornelia Eschelbach, Michael Lösler, Rüdiger Haas, Ansgar Greiwe
VLBI Radio Telescopes...

- Disturbing forces affect radio telescope main reflector
 - Temperature / wind / insolation
 - Snow load / dead load of dish
- Deformations of main reflector impair receiving properties
 - Form stability of surface / stability of focal length
 - ... and variations in time

- VGOS specifications in general
 - More compact design / Faster movements
 - Improved main reflector design (ring-focus paraboloid)
- Accuracy requirements:
 - Residuals of surface < 200 μm (RMS)
 - Signal path variation < 300 μm (RMS)
Close Range Photogrammetry...

Photogrammetric markers for adjusting the panels of the main reflector

- $<< 50 \, \mu m$ for discrete marked points
- Contact-free observation strategy
- Crane for camera positions
Combining Photogrammetry and UAV...

- Unmanned aerial vehicle (UAV, drone)
- Rechargeable batteries
- Remote control via ground-based station
- Consumer camera Sigma DP3 Merrill (with Foveon chip for full color information; weight 380 g)
- gimbal-mount below UAV for camera
- Max. flight time about 25 min
Preparation of VGOS Antenna...

Photogrammetric coded markers

- 72 markers on the surface of the telescope
- 4 markers on the sub-reflector
- 6 calibrated scale bars
- Coordinate cross for preliminary orientation of the images
Preparing Measurement Flights...

Flight plan

- Waypoints of UAV
- Trigger points for camera to take images
- Two circles and two traverses per telescope position
- Altogether ten different elevation positions
- Each elevation position two times
Photogrammetry in Detail ...

Bundle adjustment

- Unique 3D coordinates of object points
- Planar image coordinates of markers
- In situ calibration
- Over 500 connecting points (markers, screws, etc.,) for each elevation position
- Over all uncertainty 80 – 120 µm
- Collinearity equations:

\[
x'_i = x'_0 - c \frac{q_{11}(X_i - X'_0) + q_{21}(Y_i - Y'_0) + q_{31}(Z_i - Z'_0)}{q_{13}(X_i - X'_0) + q_{23}(Y_i - Y'_0) + q_{33}(Z_i - Z'_0)} + \Delta x' \\
y'_i = y'_0 - c \frac{q_{12}(X_i - X'_0) + q_{22}(Y_i - Y'_0) + q_{32}(Z_i - Z'_0)}{q_{13}(X_i - X'_0) + q_{23}(Y_i - Y'_0) + q_{33}(Z_i - Z'_0)} + \Delta y'
\]
Results from Surface Fitting...

Rotational symmetric ring-focus paraboloid in canonical representation

\[a^2 \left((x_i - r n_{x,i})^2 + (y_i - r n_{y,i})^2 \right) = z_i \]

- Estimated focal length \(f = \frac{1}{4a^2} \)
- Standard deviation of residuals 200 µm
Budgeting Gravitational Effects...

Signal path variations $\Delta L(\varepsilon)$ by Clark and Thomsen (1988)

$$\Delta L(\varepsilon) = \alpha_F \Delta F(\varepsilon) + 2\alpha_R \Delta R(\varepsilon) + \alpha_V \Delta V(\varepsilon)$$

- Focal length variation $\Delta F(\varepsilon)$
- Displacement of sub-reflector $\Delta R(\varepsilon)$
- Shift of vertex $\Delta V(\varepsilon)$
- Weighting coefficients $\alpha_F, \alpha_V, \alpha_R$
Budgeting Gravitational Effects...

Signal path variations $\Delta L(\epsilon)$ by Clark and Thomsen (1988)

Conclusion...

First investigation of a VGOS-specified VLBI radio telescope

- Proof of feasibility: UAV for photogrammetric survey of a radio telescope surface
 - Less effort than using a crane
 - No further deformations occur due to additional weight

- Determination of signal path variation components due to elevation position
 - Focal length variation of about 2 mm is about ten times smaller than for conventional radio telescopes
 - Displacement of sub-reflector counters focal length variation
Thank you for your attention...
Thank you for your attention...

We thank Lars Wennerbäck and Christer Hermansson from the mechanical workshop at the Onsala Space Observatory for their support mounting the coded targets and the scale-bars at the radio telescope. Moreover, we thank Jonas Flygare for providing the illumination function of ONSA13NE.

We would also like to show our gratitude to Eberhard Sust (MT Mechatronics GmbH) for supporting this research project by providing results of their finite element analysis.

This research project is part of the JRP 18SIB01 “Large-scale dimensional measurements for geodesy” (GeoMetre) and has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.